Linear Algebra Examples

Find the Determinant [[2*k-m*x^2,-k],[-k,k-m/2*x^2]]
Step 1
Multiply by .
Step 2
Combine and .
Step 3
The determinant of a matrix can be found using the formula .
Step 4
Simplify the determinant.
Tap for more steps...
Step 4.1
Simplify each term.
Tap for more steps...
Step 4.1.1
Expand using the FOIL Method.
Tap for more steps...
Step 4.1.1.1
Apply the distributive property.
Step 4.1.1.2
Apply the distributive property.
Step 4.1.1.3
Apply the distributive property.
Step 4.1.2
Simplify and combine like terms.
Tap for more steps...
Step 4.1.2.1
Simplify each term.
Tap for more steps...
Step 4.1.2.1.1
Multiply by by adding the exponents.
Tap for more steps...
Step 4.1.2.1.1.1
Move .
Step 4.1.2.1.1.2
Multiply by .
Step 4.1.2.1.2
Cancel the common factor of .
Tap for more steps...
Step 4.1.2.1.2.1
Move the leading negative in into the numerator.
Step 4.1.2.1.2.2
Factor out of .
Step 4.1.2.1.2.3
Cancel the common factor.
Step 4.1.2.1.2.4
Rewrite the expression.
Step 4.1.2.1.3
Rewrite using the commutative property of multiplication.
Step 4.1.2.1.4
Multiply .
Tap for more steps...
Step 4.1.2.1.4.1
Multiply by .
Step 4.1.2.1.4.2
Multiply by .
Step 4.1.2.1.4.3
Combine and .
Step 4.1.2.1.4.4
Raise to the power of .
Step 4.1.2.1.4.5
Raise to the power of .
Step 4.1.2.1.4.6
Use the power rule to combine exponents.
Step 4.1.2.1.4.7
Add and .
Step 4.1.2.1.4.8
Combine and .
Step 4.1.2.1.4.9
Multiply by by adding the exponents.
Tap for more steps...
Step 4.1.2.1.4.9.1
Move .
Step 4.1.2.1.4.9.2
Use the power rule to combine exponents.
Step 4.1.2.1.4.9.3
Add and .
Step 4.1.2.2
Move .
Step 4.1.2.3
Subtract from .
Step 4.1.3
Multiply by by adding the exponents.
Tap for more steps...
Step 4.1.3.1
Move .
Step 4.1.3.2
Multiply by .
Step 4.1.4
Multiply .
Tap for more steps...
Step 4.1.4.1
Multiply by .
Step 4.1.4.2
Multiply by .
Step 4.2
Subtract from .